

DEPARTMENT OF CIVIL ENGINEERING

Department of Civil Engineering B.Tech. Structure (2023 Pattern)

(An Autonomous Institute Affiliated to Savitribai Phule Pune University, Pune)

Department of Civil Engineering

Vision

"To provide an excellent academic environment for students to become competent Civil Engineer."

Mission

- To reinforce the students with fundamentals in Civil Engineering by providing scholarly and vibrant environment for successful careers.
- To explore and develop innovations that contributes to higher education, research and entrepreneurship development in applied domains of Civil Engineering.
- To serve society through knowledge and expertise in Civil Engineering.

Civil Engineers: Trusted Leaders for a Modern World:

Entrusted by society to create a *sustainable world* and enhance the global quality of life, *civilengineers* serve *competently*, *collaboratively*, and *ethically* as *master*:

- *Planners, designers, constructors*, and *operatorsofsociety'seconomic* and *socialengine*—the built environment
- Stewards of the natural environment and its resources
- *Innovators* and *integrators* of *ideas* and *technology* across the public, private, and academic sectors
- Managers of risk and uncertainty caused by natural events, accidents, and other threats and
- Leaders in discussions and decisions shaping public environmental and infrastructure policy.

(An Autonomous Institute Affiliated to Savitribai Phule Pune University, Pune)

Program Outcomes (POs)

Engineering Graduates will be able to:

- **1.Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **2.Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **3.Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **4.Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **5.Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. JSPM's Rajarshi Shahu College of Engineering Department of IT Engineering
- **7.Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **8.** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **9.Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **10.Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **11.Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12.Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs):

Upon successful completion of UG course in Civil Engineering, the students will attain following Program Specific Outcomes:

- 1. Satisfy the essentials in planning, analysis, design and maintenance of Civil Engineering Structures by incorporating latest technologies and modern tools.
- 2. Proficient in identifying and solving complex infrastructural problems, applying management and engineering techniques.
- 3. Provide sustainable solutions to environmental and water resources challenges.

(An Autonomous Institute Affiliated to Savitribai Phule Pune University, Pune)

Highlights of the Syllabus

Curriculum of Civil Engineering Department is designed in consultation with:

Academic Experts

Distinguished Alumni

Industry/Corporate Experts

The curriculum of the UG Program of Civil Engineering designed in association with the Bentley Systems, Builders' Association of India, Pune, and Builders Association of India (BAI).

(An Autonomous Institute Affiliated to Savitribai Phule Pune University, Pune)

Unique features of the curriculum

1. Curriculum centered at Outcome Based Education:

The new Curriculum is based on student-centered instruction models that focus on measuring student performance through outcomes. The outcomes include subject knowledge, industry required skills and attitudes.

2. Emphasize on Fundamentals:

The nature of the new curriculum is rigorous and well prescribed so that the students can spend more time on preparation and self-study. The students have to learn core subjects, solve practical based assignments and must attempt periodical quizzes. This will benefit them to grasp and keep a strong hold on fundamentals of Engineering in the most effective way.

3. Experiential Learning:

The curriculum emphasizes on hands-on sessions along with theoretical information. The new curriculum considers Problem Based Learning (PBL) as a teaching pedagogy and includes different subjects that encourage the students for hands on learning through virtual labs, mini-projects, etc. Accordingly, the curriculum maintains good balance between theory and laboratory credits.

4. Promote Creativity and Innovation:

Along with experiential learning, the curriculum also motivates the students to inculcate creativity and innovation. Apart from conventional lab, the curriculum provides a freedom for students to perform industry assignments, pilot projects, innovative development, etc.

5. Inculcating Ethics and Values:

To improvise student's behaviour, the curriculum has included systematic courses on ethics and values. The moral principles can help students to make right decisions, lead their professional lives and become ethical citizen.

6. Blend of Curricular and Non-curricular Activities

The curriculum also gives importance of different activities like co-curricular, extra-curricular, sports, culture, etc. This will help to do all round development of students in all possible ways.

7. Four Tracks in B-Tech:

The curriculum provides four tracksby offering various courses/electives/ flexibility in choosing mentorship to work in specialized field in the curriculum as,

I. Capstone Projects

II. Entrepreneur

III. Research and Higher Studies.

IV. Industry Internship

8. Global Competence:

The curriculum provides a unique opportunity for students to learn and engage in open and effective interaction with people from diverse and interconnected world. The combination of foreign languages (German, Japanese, and English) and international internships in the curriculum help the students to build a capacity to examine global and intercultural issues and to propose perspectives and views.

9. Industry Induced Internship Program

To support ever demanding industry requirements, the curriculum has included an industry internship with an objective to learn technologies pertaining to their discipline and enhance their technical knowledge with a support of the live platform of Industry.

10. Motivation for Self-Learning:

The curriculum also offers a freedom to students to take the initiatives in their learning needs and set the goals with the help of online learning platforms like MOOCs, NPTEL, Swayam, etc.

Course Type Abbreviations

BSC: Basic Science Course

ESC: Engineering Science Course

PCC: Programme Core Course

PEC: Programme Elective Course

MDM: Multidisciplinary Minor

OE: Open Elective

VSEC: Vocational and Skill Enhancement Course

HSSM: Humanities Social Science and Management

AEC: Ability Enhancement Course

IKS: Indian Knowledge System

VEC: Value Education Course

CEP: Comm. Engg. Project

FP: Field Project

CC: Co-curricular Courses

Abbreviations:

 $L-Lecture, T-Tutorial, P-Practical, Hr-Hours, C-Credits, TuT-Tutorial, ISE-In Semester Evaluation,\\ MSE-Mid Semester Evaluation, ESE-End Semester Evaluation$

S. Y. B. Tech. (Civil Engineering) Academic Year -2024-2025 (Semester –III)

(Level 5 - UG-Diploma/ Diploma-Engg.) -Semester III

Course	Course	Course		eacl Sche		<u>,</u>	Credit	Exa	Examination Scheme		eme	Total	Ownership
Course	Code	Course	L	T	P	Hr	C	ISE	MSE	ESE	TW	Marks	O where simp
PCC	CE2201T	Solid Mechanics	3	-	ı	3	3	20	30	50	ı	100	Civil
PCC	CE2201L	Solid Mechanics lab	-	-	2	2	1	ISC	E: 30	20	-	50	Civil
PCC	CE2202T	Building Materials and Construction	3	-	-	3	3	20	30	50	-	100	Civil
PCC	CE2203T	Geotechnical Engineering	3	-	-	3	3	20	30	50	-	100	Civil
PCC	CE2203L	Geotechnical Engineering Lab	-	-	2	2	1	ISC	E: 30	20	_	50	Civil
PCC	CE2204T	Fluid Mechanics	3	-	4	3	3	20	30	50	-	100	Civil
PCC	CE2204L	Fluid Mechanics Lab	-	-	2	2	1	ISC	E: 30	20	-	50	Civil
AEC	HS2203T	Universal Human Values and Ethics	2	-	1	2	2	20	30	50	-	100	Humanities
BSC	ES2201T	Engineering Mathematics III	3	-	-	3	3	20	30	50	-	100	Humanities
VSEC	CE2205T	Innovation and Entrepreneurship	2	-	/1	2	2	20	30	50	-	100	Civil
		Total	19	0	6	25	22					850	

Notes:

For Theory courses: There shall be MSE, ISE and ESE. The ESE is a separate head of passing.

For Lab courses: There shall be continuous assessment (ISCE). The ESE is a separate head of passing.

S. Y. B. Tech. Civil Engineering Academic Year -2024-2025 (Semester –IV) (Level 5 - UG-Diploma/ Diploma-Engg.) -Semester IV

Course	Course Code	Course		Геасі Sche	O		Credit	Exan	ninatio	n Sche	me	Total Marks	Ownersh ip
			L	T	P	Hr	C	ISE	MSE	ESE	TW		
PCC	CE2206T	Concrete Technology	2	-	-	2	2	20	30	50	-	100	Civil
PCC	CE2206L	Concrete Technology lab	-	-	2	2	1	ISC	E: 30	20	-	50	Civil
PCC	CE2207T	Building Planning and Architecture	3	-	1	3	3	20	30	50	-	100	Civil
PCC	CE2207L	Building Planning and Architecture Lab	-	-	2	2	1	ISC	E: 30	20	-	50	Civil
PCC	CE2208T	Analysis of Structures	3	-	-	3	3	20	30	50	-	100	Civil
PCC	СЕ2209Т	Surveying and Geomatics	3		-	3	3	20	30	50	-	100	Civil
PCC	CE2209L	Surveying and Geomatics Lab	-	-	2	2	1	ISC	E: 30	20	-	50	Civil
MDM	CEM2201T	Multidisciplinary Minor I	3	-	7	3	3	20	30	50	-	100	Other Department
VSEC	CE2210L	Introduction to Python programming	J	1	2	3	2	ISC	E: 30	20	50	100	Civil
HSSM	HS2205T	Economics	2	-	-	2	2	20	30	50	-	100	Humanities
CC	CE2211L	Co-Curricular Course-II	-	-	2	2	1	ISC	E: 30	20	-	50	Respective Department
		Total	16	1	10	27	22					900	

Notes:

For Theory courses: There shall be MSE, ISE and ESE. The ESE is a separate head of passing.

For Lab courses: There shall be continuous assessment (ISCE). The ESE is a separate head of passing.

Multidisciplinary Minor I		
Course Code	Course Name	
CEM2201T	Basic Civil Engineering	

List of Exit Courses after completion of Semester III and IV

- 1. Exit option is available for students those who have earned the total 88 credits at the End of fourth Semester.
- 2. Student who wants to avail the exit option after second year have to earn additional 8 credits from the list of courses shown below.
- 3. These courses student have to complete within summer vacation after 2nd Year.
- 4. After fulfilment as mentioned in 1 to 3 above, Students can earn **UG-Diploma/Diploma-Engg** and same will be issued by the Institute.

C			
Sr.	Course code	Name	Credits
No.	Course code	rvanie	Credits
1.	EX-CE2101	Fundamentals of structural Design	2
2.	EX-CE2102	Quantity Survey and Estimation	2
3.	EX-CE2103	Transportation	2
4.	EX-CE2104	Environmental Engineering	2

TATHAWADE, PUNE-33

(An Autonomous Institute Affiliated to Savitribai Phule Pune University, Pune)

Department of Civil Engineering

S. Y. B. Tech Academic Year – 2023-2024 Semester -III [CE2201T]: Solid Mechanics

Teaching Scheme:	Credit	Examination Scheme:
TH: 3 Hours/week	3	In Sem. Evaluation: 20M
		Mid Sem. Exam : 30M
		End Sem. Exam : 50M

Course Prerequisites:

Centroid and center of Gravity, Trigonometry and Geometry Basics, Beam Reactions

Course Objective:

To develop the ability to understand simple, flexural, shear stresses, bending moment, buckling load and deflection in various structural elements to apply the concepts to engineering problems.

Course Outcome:

After successful completion of the course, students will able to:

CO1: Calculate stress and strain in determinate and indeterminate structures.

CO2: Calculate shear force and bending moment diagrams for beams.

CO3: Estimate the bending stress and shear stress in beam.

CO4: Calculate the torsional and principal stresses and strain in structural members.

CO5: Analysis axially and eccentrically loaded Columns.

CO6: Determine slope and deflection of determinate beams.

Course Contents

UNIT-I Simple Stresses and Strains 0	6 Hours
--------------------------------------	---------

Concept of stress and strains (Linear, lateral, shear and volumetric), Generalized Hook's law, Stress-Strain curves for brittle e and ductile materials.

Elastic Constants and their relationships, stresses, strains and deformations in determinate and indeterminate structure for homogeneous and composite structures under concentrated loads, self- weight and temperature changes..

UNIT-II	Shear Force and Rending Moment Diagram	06 Ношес
UNII-II	Shear Force and Bending Moment Diagram	06 Hours

Concept of Shear force and bending moment of different type of loading and beams. Loading diagram from SFD and BMD. Relationship between rate of loading, shear force and bending moment, Concept of zero shear force, Maximum bending moment, point of contra flexure

UNIT-III	Bending and Shear stresses	06 Hours

Determination of Moment of Inertia for various cross sections. Stress due to ben ding: Theory of pure bending, flexure formula, and Bending stress distribution diagram, Moment of resistance and section modulus. Shear stress in beam: Concept of shear, Shear stress distribution diagram, concept of average shear Stress; shear connectors.

UNIT-IV Torsion, Principal stresses and Strains 06 Hou
--

1811

Pune University I.B. No. Pt/PV Engg./

Dr.R.B.Joshi Dean Academics Run

Dr. R.K.Jain Director RSCOE, Pune

Dr. J.R.Dhanuskar H.O.D ,Civil

Theory of Torsion, Numerical on shaft subjected to twisting moments. Normal and shear stresses on any oblique planes and concept of principal planes and principal stresses by analytical and graphical method by Mohr's circle. Strain Gauges

UNIT-V Axially and eccentrically loaded columns 06 Hours

Concept of critical load and buckling, Euler's formula for column with hinged ends, equivalent length for various end conditions, Rankin's formula, Limitations of Euler's formula, Safe load on column. Direct and Bending stresses for different structural members (axially and eccentrically loaded). Concept of

middle third rule of different sections

UNIT-VI Fundamentals of Structure, Slope - Defection of determinate 06 Hours

Basic concepts of Structural Analysis – Types and Classification of structure based on structural forms. Concept of indeterminacy and degrees of freedom -Static and Kinematic degree of Indeterminacy. Slope and deflection- Relationship between moment, slope and deflection, Macaulay's method. Use of these methods to calculate slope and deflection for determinant beams.

Text Books:

T1 Timoshenko, S. and and Yungs, D. H., "Strength of Materials", 3rd ed. East West Press. T2 Dr. R.K.Bansal, "Strength of Materials" 6th ed. Mechanics of solids, Laxmi Publications.

Reference Books:

- R1. Subramanian, R., "Strength of Materials", 3rd ed. Oxford Higher Education.
- R2. Bhavikatti, S. S., "Strength of Material", 4th ed. Vikas Publication.
- R3. Gambhir, M. L., "Fundamentals of solid Mechanics", PHI Learning 2009.
- R4. Bhavikatti, S. S. "Structural Analysis 1", 4th ed. Vikas Publication.

University I.B. No. JPN 'Engg./

Dr.R.B.Joshi

Dr. R.K.Jain Director RSCOE, Pune

Dr. J.R.Dhanuskar H.O.D ,Civil

Dean Academics

JSPM's

RAJARSHI SHAHU COLLEGE OF ENGINEERING TATHAWADE, PUNE-33

(An Autonomous Institute Affiliated to Savitribai Phule Pune University, Pune)

Department of Civil Engineering

S. Y. B. Tech

Academic Year – 2023-2024 Semester -III [CE2201L]: Solid Mechanics Lab

Teaching Scheme:	Credit	Examination Scheme:
TH: 2 Hours/week	01	In Sem. Continuous Evaluation: 30M
		End Sem. Exam : 20M

Course Prerequisites:

Basic Engineering Mechanics, Mechanical Properties of Materials, Safety Awareness

Course Objective:

To Study the physical and mechanical properties of different material.

Course Outcome:

After successful completion of the course, students will able to:

CO1: Identify physical and mechanical properties of bricks and tiles

CO2: Compare different metals on the basic of their properties.

CO3: Evaluate properties of timber and plywood.

CO4: Analyze structural element by using ICT tools.

Lab Contents

Guidelines for Assessment

Continuous assessment of laboratory work is to be done based on overall performance and lab practical's /assignments performance of student. Each lab practical/assignment assessment will assign grade/marks based on parameters with appropriate weightage. Suggested parameters for overall assessment as well as each Lab assignment assessment include- timely completion, performance, innovation, efficient codes, Punctuality and neatness.

List of Laboratory Assignments/Experiments (minimum 10 to be covered)

Group A	Bricks and Tiles (Any Three)		
1	1 Field test, Water absorption and efflorescence test on bricks.		
2	Compression strength test on bricks.		
3	Abrasion test of flooring tiles.		
4	Flexural strength of flooring tiles.		
Group B	Metals (Any Five)		
5	Tension test on Mild Steel, Aluminum, copper and TMT steel.		
6	Shear (Single and Double) test on mild steel.		
7	Torsion Test on mild steel.		
8	Impact (I and C) test on mils steel, aluminum and brass.		

- PSF -

Dr. J.R.Dhanuskar H.O.D ,Civil

Dr.R.B.Joshi Dean Academics 4

9	Compression test on Mild Steel/ HYSD bar.	
10	Bend and Re-bend test on Mild Steel and TMT steel.	
Group C	Group C Timber and Plywood	
11	11 Compression test on timber (Parallel and Perpendicular to grain)	
12 Bending Test on timber and plywood.		
Group D	Analysis of simple structural elements by using programming languages.	

IS Codes: IS 1608:2005, ISO 6892:1966, IS 432:1966, IS 5242:1969, IS 1717:1985, IS 1757:1973, IS1708:1980, IS 883:1994, IS 1237:1980, IS 654:1972, IS1077(1992)

Dr.R.B.Joshi Dean Academics 5

Dr. J.R.Dhanuskar H.O.D ,Civil

(An Autonomous Institute Affiliated to Savitribai Phule Pune University, Pune) **Department of Civil Engineering**

S. Y. B. Tech Academic Year - 2023-2024 Semester -III [CE2202T]: Building Materials and Construction

Teaching Scheme:	Credit	Examination Scheme:
TH: 3 Hours/week	3	In Sem. Evaluation: 20M
		Mid Sem. Exam : 30M
		End Sem. Exam : 50M

Course Prerequisites: Building components, Green Building, Sustainable Building Concepts

Course Objective:

To make aware about various components of building and their function. The aim is to introduce materials and activities of construction from foundation to finishing of building and also describe importance of the building services, circulation and safety aspects.

Course Outcome:

UNIT-I

After successful completion of the course, students will able to:

CO1: Explain details of building components, masonry and protective coating with respect to its functional requirement.

CO2: Identify suitability of form work, underpinning and scaffolding.

CO3: Describe various types of casting methods of concrete, it's curing and prefabrication.

CO4: Choose suitable types of roofing and flooring materials according to functional requirement of building.

CO5: Plan building services and vertical circulation.

CO6: Describe safety aspects to be adopted at construction site.

Course Contents

Building Construction and Masonry

	9	•		
Building components	s and their basic requirements i.e.	substructure and Sup-	erstructure equir	rements.
Introduction to auton	nation in construction, Masonry-	Introduction of stone	masonry and bri	ick masonry,
characteristics of goo	od building bricks, IS specification	n and tests, classificati	on of bricks, typ	es of bonds:
English, Flemish, He	eader, Stretcher, construction proc	cedure. Recent trends	in light weight c	onstruction
Protective Cladding				

UNIT-II	Partition Wall, Form work, Underpinning and Scaffoldings	06 Hours
---------	--	----------

Types of partition wall (metal, wooden, Gypsum) Slip form work: Component parts- design criteria. Mivan shuttering, Underpinning. Scaffolding: Purpose, types. Nano Materials and Technologies-Carbon nanotubes, silicon Dioxide nanoparticles, Titanium Dioxide nanoparticles

Dr. J.R.Dhanuskar H.O.D ,Civil

Dr.R.B.Joshi

Dean Academics

Dr. R.K.Jain Director RSCOE, Pune

06 Hours

UNIT-III

Casting Procedure of Concrete and Curing Methods

06 Hours

Form Work and Casting procedure for reinforced concrete columns, beams and slabs. Methods of Curing (Chemical Curing using Admixtures), Precast and pre-stressed concrete work, Standardization and Prefabrication to reduce cost. Construction Joints in concrete work.

UNIT-IV

Building Components and Materials

06 Hours

Types of flooring and its functional requirement, floor materials and finishes. Factory floor tremix, laser flooring. Types of roof and its functional requirement. Roofing materials. Doors, Windows, Arches and Lintels Types of Doors, Windows, Arches and Lintels-Definition, installation, specifications. Fixtures and fastenings. Ventilators: Purpose and types.

UNIT-V

Building Services and Vertical Circulation

06 Hours

Building services- plumbing services, lighting, ventilation, noise and acoustics, communications, smart and intelligent services. Vertical Circulations: design consideration, Types of staircase, and details of ramps, Steps, Ladders, lifts, and escalator. Fire escape staircase, Planing of Doglegged staircase.

UNIT-VI

Safety on Construction Sites

06 Hours

Safety on sites, storage of materials, construction safety, fire proof construction. Planning considerations for Disaster Management. Introduction to "Building and Other Construction Workers" Act

Text Books:

- T1 B. C. Punmia, Building construction, Laxmi Publications.
- T2 S.V. Deodhar, Building Materials, Khanna Publication.
- T3 Bindra and Arora, Building Construction, DhanpatRai Publications
- T4 S.K. Duggal, Building Materials, New Age International Publishers.
- T5 S. C. Rangwala, Building Construction, Charotdar Publications.

Reference Books:

- R1 Building Services Engineering by David V. Chadderton, (sixth edition or latest edition), London and New York.
- R2 Civil Engineering Materials by Neil Jackson and Ravindra K. Dhir, Palgrave Macmillan.
- R3 National Building Code -2016 (Latest)
- R4 Building Design and construction by Frederick Merrit, Tata McGraw Hill.
- R5 Times Saver Standards of Architectural Design Data by Callender, Tata McGraw Hill.
- R6 Development plan and DCP Rules of urban local body, Volume 12, New Delhi.
- R7 Model Building bye laws by MoUD, GoI.
- R8 Civil Engineering Materials by TTTI Chandigrrah, Tata McGraw Hill Publications
- R9 Materials of construction by D.N. Ghose, Tata McGraw Hill.
- R10 The construction of buildings, Seventh edition, Vol. I and Vol. 2 by R. Barry, Oxford: Blackwell science
- R11 Building Materials Technology by Ruth T. Brantley and L. Reed Brantley, Tata McGraw Hill.
- R12 Properties of Concrete by A.M. Neville, Pearson Education Limited.
- R13 Mitchell's Advanced Building Construction: The Superstructure by J. Sroud Foster

- PS11

Dr. J.R.Dhanuskar H.O.D , Civil

Dr.R.B.Joshi Dean Academics 7

(An Autonomous Institute Affiliated to Savitribai Phule Pune University, Pune) **Department of Civil Engineering**

S. Y. B. Tech Academic Year - 2023-2024 Semester -III [CE2203T]: Geotechnical Engineering

Teaching Scheme:	Credit: 03	Examination Scheme:
TH: - 3 Hours/Week		Theory
		In Sem. Evaluation : 20 Marks
		Mid Sem. Exam : 30 Marks
		End Sem. Exam : 50 Marks

Course Prerequisites: Fundamentals of Chemistry, Mathematics and Physics

Course Objective:

To provide the basic principles of soil mechanics, Classification systems, Compaction, Permeability, Consolidation and Shear strength characteristics, to understand the engineering behavior of soil to address practical problems in Geotechnical Engineering.

To understand methods of soil exploration and carry out detailed geotechnical investigation in the field. To apply basic concepts of geotechnical engineering for evaluating bearing capacity of soils.

Course Outcome:

After successful completion of the course, students will able to:

CO1: Explain the formation and structure of soil as a three-phase system.

CO2: Determine the index properties of soils.

CO3: Apply the principles of compaction, permeability, and consolidation.

CO4: Analyze total stress, pore pressure, and effective stress in soils.

CO5: Compute stress distribution in soils.

CO6: Analyze active and passive earth pressures and estimate the bearing capacity.

Course Contents

UNIT-I	Fundamentals of Soil	06 Hours

- a) Introduction of soil; Soil as three phase system; Soil structure
- b) Introduction: Formation of soils, Phase Diagram, Classification of soil, Need of soil classification. Requirement for a soil classification system.

UNIT-II	Soil Classification and Index Properties	06 Hours		
Index properties of soil and Relationships between them. Study of Engineering properties of soil (LL,				
PL, SL). Particle size classification; IS classification system; Relative density, Stroke's law, Activity				
number				

UNIT-III	UNIT-III Engineering Properties		
Compaction, Permeability and Consolidation			
UNIT-IV Effective Stress and Seepage Analysis		06 Hours	

Total stress, Pore pressure, Effective stress; Seepage pressure; Flow net

Dr. J.R.Dhanuskar H.O.D ,Civil

Dr.R.B.Joshi **Dean Academics**

UNIT-V Stress due to Load and Shear strength 06 Hours		06 Hours	
Stress Distribution in Soils – Geostatic stress, Shear Strength of Soils			
UNIT-VI Earth Pressure and Bearing Capacity		06 Hours	

Active and Passive earth pressure; Bearing Capacity of Shallow Foundations

Text Books:

- T1. Braja M. Das (2018), "Principles of Geotechnical Engineering", 7th Edition, Cengage Learning.
- T2. Punmia B.C., Jain A.K., and Jain A.K. (2019), 'Soil Mechanics and Foundation Engineering.', 17thEdition, Laxmi Publications Co., New Delhi.
- T3. Gopal Ranjan and Rao A.S.R. (2000), "Basic and Applied Soil Mechanics", New Age International (P) Ltd., New Delhi.
- T4. Dr. K R Arora "Soil Mechanics and Foundation Engg.", Standard Publishers.

Reference Books:

- R1. Lambe T.W., "Soil Testing for Engineers", Wiley Eastern Ltd., New Delhi
- R2. C Venkatramaiaha, "Geotechnical Engineering", New Age International Publishers.
- R3. Craig R.F. (2004), "Soil Mechanics", 7th edition, Spon press, New York.
- R4. Bowles J.E. (1988), "Engineering Properties of Soil and Their Measurements", McGraw Hill Book Co. New York.

Pane University 1.B. No. Pt/PN Engg./ 173/(2901)

Dr.R.B.Joshi Dean Academics 9

Dr. J.R.Dhanuskar H.O.D ,Civil

(An Autonomous Institute Affiliated to SavitribaiPhule Pune University, Pune)

S.Y. B. Tech Academic Year – 2023-2024 Semester -III [CE2203L]: Geotechnical Engineering Lab

Teaching Scheme:	Credit: 01	Lab Evaluation
LAB: -2 Hours/Week		In Sem Continuous Evaluation: 30 Marks:
		End Sem. Exam: 20 Marks
		End Sem. Exam: 20 Marks

Course Prerequisites: Fundamentals of Chemistry, Mathematics, Physics.

Course Objective:

To provide the basic principles of soil mechanics, Classification systems, Compaction, Permeability, Consolidation and Shear strength characteristics, to understand the engineering behavior of soil to address practical problems in GeotechnicalEngineering. To understand methods of soil exploration and carry out detailed geotechnicalinvestigation in the field.

To apply basic concepts of geotechnical engineering for evaluating bearing capacity of soils.

Course Outcome:

After successful completion of the course, students will able to:

CO1: Classify the type of soils.

CO2: Determine Index Properties of soils

CO3: Determine in-situ density of soil.

CO4: Estimate the coefficient of Permeability of soil.

CO5: Determine shear parameter of soil. **CO6:** Infer the soil investigation report.

	Lab Contents		
	List of Laboratory Assignments/Experiment		
1	Specific gravity determination by Pycnometer/ density bottle.		
2	Sieve analysis and soil classification as per I.S. Codes,		
	a) Mechanical Analysis using Sieve shaker.		
	Study of Hydrometer Analysis		
3	Determination of Consistency limits and their use in soil classification as per I.S. Codes.		
4	In situ density/ Field Density test by		
	a) Core cutter		
	Sand Replacement		
5	Determination of Compaction Characteristics by		
	a) Standard Proctor		
	Modified Proctor test		
6	Determination of coefficient of permeability by		
	a) Constant head method		
	Variable head method.		
7	Shear strength tests on soil		
	a) Direct shear test.		

- PS11

Dr. J.R.Dhanuskar H.O.D , Civil

Dr.R.B.Joshi Dean Academics 10

8 Study and Present soil investigation report	on test.c)Triaxial Shear test.	
8 Study and Present soil investigation report.	nvestigation report.	8

IS codes:

1.IS 2720-Part 3

- 2. IS 2720-Part 4(1985)
- 3. IS 2720-Part 5(1985)
- 4. IS 2720-Part XXIX-(1975)
- 5. IS 2720-Part VII-(1980), IS 2720-Part VIII (1983)
- 6. IS 2720-Part 17
- 7. IS 2720-Part -13(1986)

Pune
University
L.B. No.
PE/PN Engg./

Dr.R.B.Joshi Dean Academics 11

Dr. J.R.Dhanuskar H.O.D ,Civil

(An Autonomous Institute Affiliated to SavitribaiPhule Pune University, Pune)

S.Y. B. Tech Academic Year - 2023-2024 Semester -III [CE2204T]: Fluid Mechanics

Teaching Scheme:	Credit	Examination Scheme:	
TH: - 3 Hours/Week	3	In Sem. Evaluation	:20 Marks
		Mid Sem. Exam	: 30 Marks
		End Sem. Exam	: 50 Marks

Course Prerequisites:

Engineering Mechanics, Engineering Mathematics and Engineering Physics

Course Objective:

To study the fluid properties along with concept of dimensional analysis. Make equipped with principles of continuity, momentum and energy equation applicable to flowing fluid for the civil engineering problems.

Course Outcome:

After successful completion of the course, students will able to:

CO1: Describe fluid properties, dimensional analysis and model Studies

CO2: Analyze fluid at rest and fluid in motion without force consideration

CO3: Analyze fluid in motion and its application.

CO4: Distinguish laminar, turbulent flow for pipe flow

CO5: Apply open channel flow principles to uniform flow and depth discharge relationship.

CO6: Compute GVF and analyze flow around object.

Course Contents

UNIT-I	Properties of Fluid and Dimensional Analysis	06 Hours	
Definition of fluid	and fluid mechanics: examples and practical applications involving fluid	ids at rest	
and in motion, phy	ysical properties of fluids: density, specific weight, specific volume	, relative	
density and viscos	ity. Newton's law of viscosity, classification of fluids, rheological	diagram,	
Dynamic and kiner	Dynamic and kinematic viscosity, compressibility, cohesion, adhesion, surface tension, capillarity,		
vapour pressure, p	r o b l e m s involving use of above fluid properties. Dimensions of	physical	
quantities, dimension	onal homogeneity, dimensional analysis using Buckingham's π theorem	n method,	
geometric kinemati	c and dynamic similarity, dimensionless parameters. (Reynolds No., Fro	oude No.,	
Euler No., Mach no	o, and Weber No) and their significance.		

Fluid Statics and kinematics **UNIT-II** 06 Hours

Fluid Statics - The basic equation of hydrostatics, concept of pressure head, measurement of pressure (absolute, gauge), application of the basic equation of hydrostatics. Pressure measuring devices (simple manometers, differential manometers: U tube, inclined, Mechanical gauges and precision manometers, pressure transducers and their types). Centre of pressure, total pressure on plane and curved surfaces, practical applications. Introduction to IS code 3624-1987 (Pressure gauge and vacuum gauge) Fluid

Dr. J.R.Dhanuskar H.O.D ,Civil

Dr.R.B.Joshi **Dean Academics** 12

kinematics-Methods of describing the motion of fluid, velocity and acceleration, stream line, stream tube, path line, and streak line, control volume. equation of continuity for one-dimensional flow along a streamline, types of motion, rotational and irrotational motion, velocity potential, stream function and flow net

UNIT-III Fluid Dynamics 06 Hours

Forces acting on fluid mass in motion, Euler's equation of motion along a streamline and its integration, assumptions of Bernoulli's equation, Modified Bernoulli's equation, its applications and limitations, Hydraulic grade line and total energy line. Linear momentum equation and kinetic energy correction factor, momentum correction factor (Only information). Discharge measurement by Venturi meter, Orifice and orifice meter, Rotameter, Flow through sharp edged circular orifice discharging free, Hydraulic coefficients for orifice, Pitot tube

UNIT-IV Laminar and Turbulent Flow and flow through Pipe 06 Hours

- A) Characteristics of laminar flow, laminar flow through a circular pipe: Hagen Poiseuille equation, Characteristics of turbulent flow, instantaneous velocity, temporal mean velocity, scale of turbulence and intensity of turbulence, Prandtl's mixing length theory, resistance to flow in smooth and rough pipes, friction factor for commercial pipes, Moody's diagram.
- B) Flow through pipes: Energy losses in pipe flow, Equation for major loss and minor losses in pipe, flow through pipes in simple and compound pipe, pipes in series, parallel, Dupit's equation, Introduction to siphon.

UNIT-V Open channel flow 06 Hours

Introduction to Open channel flow: Classification of channels, channel flows and geometric elements of channel, Basic governing equations of Channel flow viz. continuity equation, energy equation and momentum equation, Velocity distribution in open channel flow. Uniform flow in open channels: Uniform flow formulae: Chezy's and Manning's formulae; Important terms pertaining to uniform flow, viz. normal depth, conveyance, section factor, Uniform flow computations. Most efficient channel sections: rectangular, triangular and trapezoidal. Depth-Energy Relationships in Open Channel Flow: Specific energy and Specific force diagram, Depth discharge Diagram, Critical depth, Conditions for occurrence of critical flow; Froude's number, flow classification based on it.

UNIT-VI Gradually Varied Flow 06 Hours

Gradually Varied Flow (GVF) in Open Channel Flow: Theory and Computation Basic Assumptions of GVF; Dynamic equation of GVF - Alternative forms; Classification of channel bed slopes, Various GVF profiles, Methods of GVF computations: Direct Step method. (mention of other method),

Fluid Flow around Submerged Objects: Practical problems involving fluid flow around submerged objects, Definitions and expressions for drag, lift, drag coefficient, lift coefficient, types of drag. Introduction to Drag on sphere, cylinder.

Text Books:

- T1. Hydraulics and Fluid Mechanics by Dr. P. N. Modi and Dr. S. M. Seth, Standard Book House.
- T2. Flow in Open Channels by K Subramanya, Pub: Tata McGraw Hill, New Delhi
- T3. Fluid Mechanics and Fluid Machinery by R. K. Bansal, Laxmi Publications.

Reference Books:

- R1. Fluid Mechanics and Hydraulic Machines by McGraw Hill Education (India).
- R2. Fluid Mechanics by YunusCengel, JhonCimbala, Tata MacgrawHill,New Delhi.

Dr. J.R.Dhanuskar H.O.D ,Civil

Dr.R.B.Joshi Dean Academics

13

R3.Fluid Mechanics by R. J. Garde, A.J Mirajgaonkar, SCITECH Publication.

R4. Fluid Mechanics by Streeter and Wylie, Tata McGraw Hill.

R5. Fluid Mechanics by K. Subramanya, McGraw Hill.

R6. Fluid Mechanics by Frank White, McGraw Hill.

R7. Open Channel Hydraulics by Ven Tee Chow, Pub: Mcgraw- Hill Book Company- Koga

IS Code: IS code 3624-1987 (Pressure gauge and vacuume gauge)

Hand books:

http://www.engmatl.com/home/viewdownload/10-engineering-handbooks-pocket-books/123-fluidechanics-handbook

http://www.springer.com/materials/mechanics/book/978-3-540-25141-5.

Resourses:

http://nptel.iitm.ac.in/courses.php

http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-KANPUR/FLUIDMECHANICS/ui/

Course_home-3.htm

University Ell. No.

Dr.R.B.Joshi

14

Dr. R.K.Jain Director RSCOE, Pune

Dr. J.R.Dhanuskar H.O.D ,Civil

Dean Academics

(An Autonomous Institute Affiliated to SavitribaiPhule Pune University, Pune)

S.Y. B. Tech Academic Year – 2023-2024 Semester -III [CE2204L]: Fluid Mechanics Lab

Teac	ching Scheme:	Credit: 01	Lab Evaluation	
	: -2 Hours/Week	Credit. 01	In Sem Continuous Evaluation: 30 Marks:	
Lilb	. 2 110d15/ W CCR		End Sem. Exam : 20 Marks	
	rse Prerequisites: Engineering	Mechanics, and Engineer	ring Physics	
	oratory Objective:			
			and dynamics flow related to pipe flow.	
Besid	des, another objective is to perfor	m experiments related to o	open channel flow	
Lab	oratory Outcome:			
	er successful completion of lab,	students will able to:		
	: Determine fluid properties			
	: Verify Bernoulli's theorem an	nd its application		
	: Determine major loss in pipe			
CO4	: Determine Fluid properties i	n open channel flow		
CO5	: Application of soft technique	related to fluid problems	\$	
	List of Laboratory As	ssignments/Experiments	(minimum 8 to be covered)	
	Experimen	ts. First six experiments	are compulsory.	
1	Measurement of viscosity by Re			
2	Experimental verification of Be		erence to loss of energy	
3	Calibration of Venturi meter / C	Orifice meter.		
4	Plotting the pattern of laminar f	low using Reynolds appara	atus or Halshaw's apparatus.	
5	Determination of, minor loss in a pipe system/friction factor for a given pipe.			
6	6 Flow around a Circular Cylinder/Aerofoil.			
7	7 Study of Uniform Flow Formulae for Open channel.			
8	Velocity Distribution in Open C			
9	Calibration of Rectangular and			
	Assignments any two of following			
1	Solve three reservoir problem /		TILL MED CELTS	

Determination of friction factor for a pipe using any programming language (PYTHON)

Developing a demo model related to any fluid flow phenomenon (physical model/

-

Dr. J.R.Dhanuskar H.O.D ,Civil

model).

3

5

Application of any fluid mechanics software to analyze the problem.

Assignment on drawing of flow net graphically

Dr.R.B.Joshi

Dean Academics

Site visit: Report on Site visit to any one of the Research Institute like CWPRS, WALMI, MERI etc

Dr. R.K.Jain Director RSCOE, Pune

15

soft

Text Books:

- T1 Hydraulics and Fluid Mechanics by Dr. P. N. Modi and Dr. S. M. Seth, Standard Book House.
- T2 Flow in Open Channels by K Subramanya, Pub: Tata McGraw Hill, New Delhi
- T3 Fluid Mechanics and Fluid Machinery by R. K. Bansal, Laxmi Publications.

Reference Books:

- R1.Fluid Mechanics and Hydraulic Machines by McGraw Hill Education (India).
- R2.Fluid Mechanics by YunusCengel, JhonCimbala, Tata MacgrawHill, New Delhi.
- R3.Fluid Mechanics by R. J. Garde, A.J Mirajgaonkar, SCITECH Publication.
- R4.Fluid Mechanics by Streeter and Wylie, Tata McGraw Hill.
- R5.Fluid Mechanics by K. Subramanya, McGraw Hill.
- R6.Fluid Mechanics by Frank White, McGraw Hill.
- R7.Open Channel Hydraulics by Ven Tee Chow, Pub: Mcgraw- Hill Book Company- Koga IS Code:
 - IS code 3624-1987 (Pressure gauge and vacuume gauge)

Hand books:

- http://www.engmatl.com/home/viewdownload/10-engineering-handbooks-pocket-books/123-fluid-mechanics-handbook
- http://www.springer.com/materials/mechanics/book/978-3-540-25141-5.

e-Resourses:

http://nptel.iitm.ac.in/courses.php

http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-KANPUR/FLUIDMECHANICS Course home-3.htm

/ui/

-P817 -

Dr. J.R.Dhanuskar H.O.D ,Civil

Dr.R.B.Joshi Dean Academics 16

(An Autonomous Institute Affiliated to SavitribaiPhule Pune University, Pune)

S.Y. B. Tech Academic Year – 2023-2024 Semester -III [HS2203T]: Universal Human Values and Ethics

Teaching Scheme	Credit	Examination Scheme:	
TH: 2	2	In Sem. Evaluation: 20Marks	
		Mid Sem. Exam : 30marks	
		End Sem. Exam : 50marks	

Course Objectives:

- 1. To help students to distinguish between values and skills and understand the need, basic guidelines, content and process of value education.
- 2. To help students to initiate a process of dialog within themselves to know what they 'really want to be'in their life and profession
- 3. To help students to understand the meaning of happiness and prosperity for a human being.
- 4. To facilitate the students to understand harmony at all the levels of human living, and live accordingly.

Course Outcome:

After successful completion of the course, students will able to

CO1: Relate foundational concepts of value education, self-exploration, happiness, prosperity, and the basic human aspirations.

CO2: Develop an understanding of human beings as a co-existence of self and body.

CO3: Evaluate the values in human relationships and their impact on societal harmony and nature.

Course	Contents	
--------	----------	--

UNIT-I	Introduction to value education	
Understanding value ed	ducation, self-exploration as the process for value education, happing	ness and

prosperity, right understanding, relationship and physical facility, happiness and prosperity–current scenario, method to fulfill the basic human aspiration.

UNIT-II	Harmony	y in human l	peing	06 Hours

Understanding human being as a coexistence of the self and body, understanding the needs of self and body, the body as an instrument of the self, understanding activities of self, understanding harmony in the self, understanding the harmony in self with body, programs to fulfill the self-regulation and health.

UNIT-III	Harmony in family and society	06 Hours
----------	-------------------------------	----------

Harmony in family-a basic unit of human interaction, Human—human relationship, values in relationships, understanding harmony in the society and vision for universal human order.

Dr. J.R.Dhanuskar H.O.D ,Civil

Dr.R.B.Joshi **Dean Academics** 17

Understanding the harmony in society and nature, understanding the four orders of nature, realizing existence as co- existence at all levels.

Guidelines for Assessment

In semester evaluation shall be based on continuous assessment based on timely submission of assignments.

Text Books:

- T1. Human values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010
- T2. JeevanVidya:EkParichaya,ANagaraj,JeevanVidyaPrakashan,Amarkantak, 1999.

Reference Books:

R1. Manav Vyavhar Darshan, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 2001

- PSF -

Dr. J.R.Dhanuskar H.O.D ,Civil

Dr.R.B.Joshi Dean Academics Ring

18

(An Autonomous Institute Affiliated to SavitribaiPhule Pune University, Pune)

S.Y. B. Tech Academic Year – 2023-2024 Semester -III [ES2201T]: Engineering Mathematics III

Teaching Scheme: TH: - 3 Hours/Week	Credit 3	Examination Scheme: In Sem. Evaluation: 20 Marks Mid Sem. Exam: 30 Marks End Sem. Exam: 50 Marks
--	-------------	--

Pre requisites: - Differential and Integral Calculus, Differential equations of first order and first degree, Fourier series and Vector algebra.

Course Objectives:

To familiarize the students with concepts and techniques in Ordinary and Partial differential equations, Laplace transform, Numerical Methods, Statistics, Probability and Vector Calculus. The aim is to equip them with the techniques to understand advanced level mathematics and its applications that would enhance analytical thinking power, useful in their disciplines.

Course Outcomes:

At the end of this course, students will be able to

CO1: Solve higher order linear differential equations and its applications to modelling and analysing civil engineering problems such as bending of beams, whirling of shafts and mass spring systems.

CO2: Apply Laplace transform techniques to solve differential equations involved in vibration theory, heat transfer and related civil engineering applications

CO3: Solve the system of linear equations using direct and iterative numerical techniques and develop solutions for ordinary differential equations using single step and multistep methods applied to hydraulics, geotechnics and structural systems.

CO4: Apply statistical methods like correlation, regression and probability theory in data analysis and predictions in civil engineering.

CO5: Evaluate the important concepts associated with scalar fields and vector fields such as the gradient, directional derivative, the divergence, curl and evaluate line, surface and volume integrals as applicable to fluid flow problems.

CO6: Solve Partial differential equations (PDEs) such as wave equation, one and two dimensional heat flow equations related to civil engineering applications.

Course Contents			
UNIT-I	Linear Differential Equations (LDE) and Applications	07 Hours	

- PSY

Dr. J.R.Dhanuskar H.O.D ,Civil

Dr.R.B.Joshi Dean Academics Ring

19

LDE of nth order with constant coefficients, Complementary Function, Particular Integral, General method, Short methods, Method of variation of parameters, Cauchy's and Legendre's DE, Simultaneous and Symmetric simultaneous DE. Modelling of problems on bending of beams, whirling of shafts and mass spring systems

UNIT-II Laplace Transform (LT) 07 Hours

Definition of LT and Inverse LT, Properties and Theorems, LT of some special functions viz. Periodic, Unit Step and Unit Impulse. Applications of LT for solving LDE.

UNIT-III Numerical Methods 06 Hours

Numerical solutions of system of linear equations: Gauss elimination method, Jacobi method and Gauss-Seidel method. Numerical solutions of ordinary differential equations: Euler's method, Modified Euler's method, Runge-Kutta 4th order method and Predictor-Corrector methods.

UNIT-IV Statistics and Probability 07 Hours

Measures of central tendency, Standard deviation, Coefficient of variation, Moments, Skewness and Kurtosis, Correlation and Regression, Reliability of Regression estimates.

Probability, Theorems of Probability, Probability density function, Probability distributions: Binomial, Poisson, Normal, Test of Hypothesis: Chi-square test and t-test

UNIT-V Vector Calculus 07 Hours

Vector differentiation, Gradient, Divergence and Curl, Directional derivative, Solenoidal and Irrotational fields, Vector identities. Line, Surface and Volume integrals, Green's Lemma, Gauss's Divergence theorem and Stoke's theorem

UNIT-VI Applications of Partial Differential Equations (PDE) 07 Hours

Basic concepts, Modelling of vibrating string, Wave equation, one and two dimensional Heat flow equations, method of separation of variables, Fourier series. Applications of PDE to problems of civil engineering

Guidelines for Tutorial and Term Work:

Tutorial shall be engaged in batches (batch size of 22 students maximum) per division.

Term work shall be based on continuous assessment of six assignments (one per each unit).

Text Books:

- T1. Higher Engineering Mathematics by B.V. Ramana (Tata McGraw-Hill).
- T2. Higher Engineering Mathematics by B. S. Grewal (Khanna Publication, Delhi).

Reference Books:

- R1. Advanced Engineering Mathematics, 10e, by Erwin Kreyszig (Wiley India).
- R2. Differential Equations, 3e by S. L. Ross (Wiley India).
- R3. Numerical Methods for Scientific and Engineering Computation, by M. K. Jain, S. R. K. Iyengar and R. K. Jain, 5e, (New Age International Publication)
- R4. Numerical Methods for Engineers, 7e by S.C. Chapra and R. P. Canale (McGraw-Hill Education)
- R5. Introduction to Probability and Statistics for Engineers and Scientists, 5e, by Sheldon M.Ross (Elsevier Academic Press).

R6. Advanced Engineering Mathematics, 7e, by Peter V. O'Neil (Cengage Learning).

20

Dr. J.R.Dhanuskar H.O.D ,Civil Pune
University
1.B. No.
PU/PV Engg./
173/(2001)

Dr.R.B.Joshi Dean Academics

TATHAWADE, PUNE-33
(An Autonomous Institute Affiliated to SavitribaiPhule Pune University, Pune)

S.Y.B. Tech

Academic Year - 2023-2024 Semester -III

[CE2205T]: Innovation and Entrepreneurship

Teaching Scheme:	Credit	Examination Scheme:
TH: - 2 Hours/Week	2	In Sem. Evaluation: 20 Marks
		Mid Sem. Exam : 30 Marks
		End Sem. Exam : 50 Marks

Course Objectives:

To understand an entrepreneur through case studies of successful entrepreneurs.

To select the appropriate Product or Service for a business and Innovate in Global Thrust Areas.

To understand the pain areas of an entrepreneur and study site selection, market survey, production, Finance, Costing and applied management in Business.

To understand Business Model Canvas and prepare Project Report for the selected business.

Course Outcome:

After successful completion of the course, students will able to:

CO1: Identify product or service for the business.

CO2: Discuss Innovative Ideas in Global Thrust Areas like Agriculture and food processing, Automation, Environment, Health care, Energy, AI and ML.

CO3: Plan a micro or small enterprise by conducting market surveys and performing financial assessments such as ROI, payback period, and break-even analysis.

CO4: Develop a business model canvas.

$\boldsymbol{\alpha}$		$\boldsymbol{\alpha}$	
	nirce	l 'An'	rentc

UNIT-I To understand Entrepreneur			
Who is an Entrepreneur? Case Studies of Successful Entrepreneurs. Business Opportunity Identification.			
Case study of any two products or services.			
TINITED IT	T	(TT	

UNIT-II Innovation 6 Hours

What is Innovation? Innovation Principles to Ideate. Idea Generation in global Thrust areas.

UNIT-III Procedure for Investment 6 Hours

Planning a Micro, Small Enterprise. Whom to contact for what. Market Survey tools. Return on Investment, Payback Period, Break Even Analysis, Basics of Costing.

UNIT-IV Registration of Startup 6 Hours

Business Model Canvas. Startup potential in India. Udyam Registration on Ministry of MSME online. Startup India Registration on Startup India portal.

Text Books:

_P811__

Dr. J.R.Dhanuskar H.O.D ,Civil

Dr.R.B.Joshi Dean Academics 21

- T1. The Dynamics of Entrepreneurship Development and Management by Vasant Desai Himalaya Publishing House.
- T2. A Manual for Entrepreneurs by Dr. Dinesh Awasthi, Entrepreneurship Development Institute of India, Ahmedabad.
- T3. Introduction to Entrepreneurship by Dr Santosh Kumar Sahu, Bookscape Publication.

Reference Books:

- R1. Entrepreneurship 11th Edition by Robert Michael P.,Peters Dean A.,Shephers Sabyasachi Sinha, Publication MC Graw Hill India
- R2. Project Management and Entrepreneurship by Dr. Vasant Desai, Himalaya Publishing House.

* 15.11.56

University
I.B. No.
PU/PN Engg./
173/(2001)

Dr.R.B.Joshi

Office

22

Dr. R.K.Jain Director RSCOE, Pune

Dr. J.R.Dhanuskar H.O.D ,Civil Dr.R.B.Joshi Dean Academics

(An Autonomous Institute Affiliated to SavitribaiPhule Pune University, Pune)

S.Y.B. Tech Academic Year – 2023-2024 Semester -IV [CE2206T]: Concrete Technology

Teaching Scheme:	Credit	Examination Scheme:
TH: - 02/Week	TH:2	In Sem. Evaluation :20 Marks
		Mid Sem. Exam : 30 Marks
		End Sem. Exam : 50Marks

Course Prerequisites: Basic civil engineering/ Basics of construction materials like lime, cement, natural and artificial sand, plain cement concrete. Chemistry / chemical reaction between cement and water

Course Objective:

The course is designed with the objective to make the students familiarize with physical and mechanical properties of various ingredients of concrete and help them to understand behavioral aspect of concrete in its fresh and hardened state. It helps the students to gain the knowledge of various topics such as deterioration, method of repairs. It also aims to impart the knowledge regarding concrete mix design.

Course Outcome:

After successful completion of the course, students will able to:

CO1: Explain the properties, and significance of ingredient of concrete.

CO2: Investigate the properties of fresh concrete.

CO3: Investigate the properties of hardened concrete.

CO4: Describe the special concrete types and concreting techniques.

CO5: Design the concrete mix of desired grade by using various methods.

CO6: Explain deteriorations, repairs, durability and Permeability of concrete.

Course Contents

UNIT-I	Introduction to Concrete as a Construction Material	04 Hours
~		

Cement -

- a) classification of cement, types of cement, hydration of cement
- b) Aggregate and Admixtures Different classifications of aggregate, mechanical and physical properties, deleterious materials, soundness, alkali-aggregate reaction Quality of water for use in concrete, role of admixture, classification and types of liquid admixtures and mineral admixtures classification and types of admixtures like accelerators, retarders, plasticizers, super plasticizers, mineral

admixtures-fly ash, silica fume, ground granulated blast furnace slag.

- PSY

Dr. J.R.Dhanuskar H.O.D ,Civil

Dr.R.B.Joshi Dean Academics 23

UNIT-II

Properties, Production and testing of fresh concrete

04 Hours

Fresh concrete: Workability – factors affecting workability, cohesion and segregation, Bleeding, Laitance, manufacturing of concrete, maturity rule.

Tests of fresh concrete – Various Workability test for regular and advanced concrete.

UNIT-III

Properties and tests on hardened concrete

04 Hours

Hardened concrete – Strength of concrete, factors affecting strength, relation between tensile and compression strength, impact strength, of hardened concrete

Nondestructive testing: Rebound hammer, Ultrasonic pulse velocity, Pullout test and Impact echo test, Rebar locator.

UNIT-IV

Concreting techniques and Special Concretes

04 Hours

Special concreting techniques: pumping of concrete, under water concreting, ready mix concrete, and roller compacted concrete, cold weather concreting, hot weather concreting.

Special concretes – Types Various special concrete and its need and functions

UNIT-V

Concrete Mix Design

04 Hours

Concepts of Mix Design, Factors to be considered, methods of Mix Design for M25 and above grades by latest revised edition of IS-456, 10262.

UNIT-VI

Deterioration and repairs.

04 Hours

Deterioration – Durability, factors affecting the durability of concrete, Permeability, chemical attack and sulphate attack by seawater, acid attack, chloride attack, carbonation of concrete and its determination, corrosion of reinforcement.

Repairs – Symptoms and diagnosis of distress, evaluation of cracks, selection of repair procedure, repair of defects using various types and techniques – shotcrete and grouting.

Text Books:

- T1. Concrete Technology by M. S. Shetty, S Chand, New Delhi-110055.
- T2. Concrete Technology by M. L. Gambhir, Tata McGraw-Hill.
- T3. Concrete technology by A. M. Neville, J.J. Brooks, Pearson.

Reference Books:

- R1. Concrete Technology by A. R. Shanta Kumar, Oxford University Press, 2018.
- R2. Properties of Concrete by A. M. Neville, Longman Publishers.
- R3. Concrete Technology by R.S. Varshney, Oxford and IBH.
- R4. Microstructure and Properties of Concrete by P. Kumar Mehta, Prentice Hall.
- R5. Concrete Mix Design by A. P. Remideos, Himalaya Publishing House.
- R6 Concrete Structures, Repair, Rehabilitation and Retrofitting by J. Bhattacharjee, CBS Publishers and Distributors Pvt. Ltd.
- R7. Durability Design of Concrete Structures, by A. Sarja and E. Vesiari, E and FN Spon Publication, 1996.

IS Codes: Latest revised editions of IS codes: IS 456, IS 269, IS 1489, IS 4031, IS 383, IS 2386, IS 9103, IS 516, IS 1199, IS 10262, SP 23.IS 13311.

- P842 --

Dr. J.R.Dhanuskar H.O.D ,Civil

Dr.R.B.Joshi Dean Academics 24

(An Autonomous Institute Affiliated to SavitribaiPhule Pune University, Pune)

S .Y. B. Tech Academic Year – 2023-2024 Semester -IV [CE2206L]: Concrete Technology Lab

Teaching Scheme: LAB: -02 Hours/Week	Credit 01	Examination Scheme: ISCE: 30 Marks
		End Sem. Exam: 20Marks

Course Objective:

To Study the physical and mechanical properties of different material.

Course Outcome:

After successful completion of the course, students will able to:

CO1: Determine physical and mechanical properties of cement and aggregates.

CO2: Design concrete mix proportions by IS Code method.

CO3: Determine the compressive strength and workability of concrete.

CO4: Analyze the stress-strain behavior of concrete under compressive loading using cylindrical specimens.

CO5: Interpret the indirect tensile strength and flexural strength of hardened concrete.

CO6: Prepare site visit report including rate analysis.

Lab Contents

Guidelines for Assessment

Continuous assessment of laboratory work is to be done based on overall performance and lab practical's /assignments performance of student. Each lab practical/assignment assessment will assign grade/marks based on parameters with appropriate weightage. Suggested parameters for overall assessment as well as each Lab assignment assessment include- timely completion, performance, innovation, efficient codes, Punctuality and neatness.

List of Laboratory Assignments/Experiments (Experiments 6,11 and 12 numbers are compulsory. Minimum 10 experiments to be covered)

1 Fineness of cement and fly ash (by sieve method)			
2 Standard consistency, Initial and final setting time and soundness of cement.			
3	Compressive strength of cement.		
4	Fineness modulus, Moisture content, silt content, bulk density and specific gravity of		
	coarse aggregate.		
5 Fineness modulus, Moisture content, silt content, bulk density and specific gravi			

-1882 --

Dr. J.R.Dhanuskar H.O.D ,Civil

Dr.R.B.Joshi Dean Academics 25

and or Vee-Bee Consistometer apparatus.		aggregate.
method rebound Hammer and Quality of concrete by ultra-sonic pulse velocity (demo Video). 8 Workability of concrete with and without admixture by slump cone, compaction factor and or Vee-Bee Consistometer apparatus.	6	Concrete mix design by IS code method using excel sheet/software
Video). 8 Workability of concrete with and without admixture by slump cone, compaction factor and or Vee-Bee Consistometer apparatus.	7	Compressive strength test of concrete on cubes by destructive and non-destructive
8 Workability of concrete with and without admixture by slump cone, compaction factor and or Vee-Bee Consistometer apparatus.	method rebound Hammer and Quality of concrete by ultra-sonic pulse velocity	
and or Vee-Bee Consistometer apparatus.		Video).
**	8	Workability of concrete with and without admixture by slump cone, compaction factor,
9 Compressive strength test of concrete on cylinder (Stress –strain behavior- demo Vide		and or Vee-Bee Consistometer apparatus.
	9	Compressive strength test of concrete on cylinder (Stress –strain behavior- demo Video).
Indirect tensile strength and flexural strength of hardened concrete.	10	Indirect tensile strength and flexural strength of hardened concrete.
Report on Site Visit (RMC Plant and advanced materials and techniques using on sites	11	Report on Site Visit (RMC Plant and advanced materials and techniques using on sites)
and prepare sheet of comparison of RMC materials with regular concrete and its rates		and prepare sheet of comparison of RMC materials with regular concrete and its rates
12 Market survey of structural materials including its costing	12	Market survey of structural materials including its costing

IS Codes: Latest revised editions of IS codes: IS 456, IS 269, IS 1489, IS 4031, IS 383, IS 2386, IS 9103, IS 516, IS 1199, IS 10262, SP 23.IS 13311. IS 1608:2005, ISO 6892:1966, IS 432:1966, IS 5242:1969, IS 1717:1985, IS 1757:1973, IS1708:1980, IS 883:1994, IS 1237:1980, IS 654:1972, IS1077(1992)

-P817 -

Dr. J.R.Dhanuskar H.O.D ,Civil

Dr.R.B.Joshi Dean Academics 26

No.

(An Autonomous Institute Affiliated to SavitribaiPhule Pune University, Pune)

S.Y. B. Tech Academic Year – 2023-2024 Semester -IV [CE2207T]: Building Planning and Architecture

Teaching Scheme:	Credit: 03	Examination Scheme:
TH: - 3 Hours/Week		Theory
		In Sem. Evaluation: 20 Marks
		Mid Sem. Exam : 30 Marks
		End Sem. Exam : 50 Marks

Course Prerequisites: Principles of planning, fundamentals of Graphics.

Course Objective: This course aims to enable students for developing the plan the, elevation and section of residential and public building by referring bye-laws and Architectural Aspects along with study of disaster management concepts.

Course Outcome:

After successful completion of the course, students will able to:

CO1: Describes necessity of town planning and legal aspects.

CO2: Explain National Building Code for planning of building and safety on construction site.

CO3: Describe green building principles, sustainable materials, and climatic considerations in planning.

CO4: Discuss Architectural Principles and Building byelaws for building construction.

CO5: Draw line plan of public building.

CO6: Discuss about building services and disaster management concepts.

Course Contents

	Ul	NIT-	I				Introduction to Planning	06 Hours
_	-	4.		m	DI	•		

Introduction to Town Planning:

Necessity and evolution of town planning in India. Development plan and its importance, Objectives and Contents of DP, Land use zoning, Introduction to different zones of land in town planning, Requirements of various zones.

Legal Aspects:

Government Bodies responsible for sanction plan and other related documents, 7/12 abstract, Form 6 and its types, Concept of TDR(Transferable Development Rights), Concept of TOD(Transit-oriented development) List of documents to be submitted to local authority, Procedure for Commencement and Occupancy Certificate, Various NOCs required, Ownership documents (Agreement for Sale, Sale Deed, Conveyance Deed, Lease in case of leasehold properties, Power of Attorney, Agreements Deed/Contracts), stamp duty rates /stamp duty.

UNIT-II	Building Drawings	06 Hours
Building Bye-Laws		

1882

Dr. J.R.Dhanuskar H.O.D ,Civil

Dr.R.B.Joshi Dean Academics 27

National Building Code-2016, Unified Development Control and Promotion Regulations Rules, Maharashtra Industrial Development Corporation (MIDC), Necessity of bye-laws, floor area ratio (F.A.R.), concept of V.P.R. Marginal distances, building line: control line, height regulations, room sizes, Area calculations (built-up area, carpet area etc.), Rules for ventilation and lighting. Principles of Architectural planning, Relation between form, function, utility, aesthetics. scales for various types of drawings, dimensioning, symbols and Abbreviations as per I.S. 962-1989 code

Building Drawings

Concept of Preliminary Drawings, Submission Drawing, Working Drawings, Developed plans, sections, elevations, site plan, Location Plan, Area Statements, Schedule of Opening-Doors, Windows, Ventilators, construction notes,

UNIT-III Green Building and Rating System 06 Hours

Green Building

Introduction to Green Building, Green Materials, Planning concepts (site selection, orientation, sun path and wind diagram etc.), Climatic considerations and Landscaping.

Green Building Rating System

Green building rating systems (IGBC, GRIHA LEED etc.), GEM (Green Environment Management) certification

UNIT-IV Planning of Residential Buildings 06 Hours

Planning of Residential Buildings:

Planning and design for Preliminary Drawings, Submission drawings, Working Drawings for residential buildings-Bungalows, Row houses, Twin bungalows, Ownership Flats, Apartments, etc.

UNIT-V Planning of public and Industrial buildings 06 Hours

Planning of Public and Industrial buildings:

Functional requirements and planning of various types of public buildings (Line Plan only) – Business building, Mercantile building, Industrial buildings, Commercial buildings, Educational buildings, Institutional buildings, Assembly buildings, Storage Building, Hazardous buildings, High rise building, Vegetable Markets etc.

UNIT-VI Building Services and Disaster Management 06 Hours

Building Services-Design of water supply, waste water and storm water collection system for various types of buildings. Wet and dry solid waste segregation, vermicomposting, vertical circulation,

Disaster Management on Construction site - Disaster Management Cycle, Safety on sites, Evacuation Time, Fire Escape Elements, Need for Flood Protection and Earthquake Resistant Structures

Text Books:

- **T1** .M. G. Shah, C.M. Kale and S. Y. Patki, Building drawings with an integrated Approach to Built-Environment, Tata McGraw Hill, New Delhi (5th Edition or Latest edition)
- T2 .Dr. S.V.Deodhar, Building Science and planning, Khanna Publishers.
- T3 .David V. Chadderton, Building Services Engineering (sixth edition or latest edition), London and New York.
- T4 .Jan A. Van Der Westhuizen, Drawing for Civil Engineering.

Reference Books:

- **R1**. National Building Code -2016 (Latest)
- **R2**. Building Design and construction by Frederick Merrit, Tata McGraw Hill.
- **R3**. Times Saver Standards of Architectural Design Data by Callender, Tata McGraw Hill.

28

Dr. J.R.Dhanuskar H.O.D ,Civil

Dr.R.B.Joshi Dean Academics

R4.I.S. 962-1989 Code for practice for Architectural and Building Drawings.

R5. Development plan and DCP Rules of urban local body, Volume 12, New Delhi.

R6.Model Building bye laws by MoUD, GoI.

R7. Green and Sustainable Building Manuals by IGBC-Hyderabad and TERI-GRIHA, New Delhi.

R8.Building Materials by S.K. Duggal, New Age International Publishers.

R9.Civil Engineering Materials by TTTI Chandigarh, Tata McGraw Hill Publications

- P812 --

Dr. J.R.Dhanuskar H.O.D ,Civil

Dr.R.B.Joshi Dean Academics 29

(An Autonomous Institute Affiliated to SavitribaiPhule Pune University, Pune)

S.Y.B. Tech

Academic Year – 2023-2024 Semester -IV

[CE2207L]: Building Planning and Architecture Lab

Teaching Scheme:	Credit: 01	Lab Evaluation
LAB: -2 Hours/Week		In Sem Continuous Evaluation: 30 Marks:
		End Sem. Exam : 20 Marks

Course Prerequisites: Principles of planning, fundamentals of Graphics.

Course Objective: This course aims to enable students for developing the plan the, elevation and section of residential and public building by referring bye-laws and Architectural Aspects along with study of disaster management concepts.

Course Outcome:

After successful completion of the course, students will able to:

CO1: Develop architectural line plan for residential or public buildings by considering principles of planning.

CO2: Draw Perspective drawing of building element.

CO3: Identify requirements of documents for sanctioning plan.

Lab Contents

Guidelines for Assessment

Innovative Concept, Line work, Planning/designing abilities, Presentations and understanding based on oral examination of relevant exercises.

List of Laboratory Assignments/Experiments (Minimum 03 to be covered)

- Prepare a report file (It shall consist of data/information of the project, planning Considerations and line plans, Design calculations).
- Detailed Drawing of Residential or Public building on A1 paper with suitable scale.

 Floor Plan, Elevation, Sectional Elevation, Site plan indicating water supply and drainage line, ,
 Foundation Plan, Location Plan, Structural Drawings, with area statement construction notes, schedule of openings
- Working drawings of any type of Residential or Public building drafted using software (Bentley-Micro Station, Auto-CAD, CADD, RIVET, Google Sketch etc.) suitable scale or preferably 1:50.
- 4 Perspective drawing of a small building element from the same project/ single storeyed building.
- Assignment on preparing entire set of documents required for sanctioning plan from PMC, PCMC, MIDC, MMRDA etc.

- PS12 -

Dr. J.R.Dhanuskar H.O.D ,Civil

Dr.R.B.Joshi Dean Academics 30

Text Books:

- **T1** .M. G. Shah, C.M. Kale and S. Y. Patki, Building drawings with an integrated Approach to Built-Environment, Tata McGraw Hill, New Delhi (5th Edition or Latest edition)
- T2 .Dr. S.V.Deodhar, Building Science and planning, Khanna Publishers.
- T3 .David V. Chadderton , Building Services Engineering (sixth edition or latest edition), London and New York.
- T4 .Jan A. Van Der Westhuizen, Drawing for Civil Engineering.

Reference Books:

- **R1**. National Building Code -2016 (Latest)
- **R2**.Building Design and construction by Frederick Merrit, Tata McGraw Hill.
- R3. Times Saver Standards of Architectural Design Data by Callender, Tata McGraw Hill.
- R4.I.S. 962-1989 Code for practice for Architectural and Building Drawings.
- R5.Development plan and DCP Rules of urban local body, Volume 12, New Delhi.
- **R6**. Model Building bye laws by MoUD, GoI.
- R7. Green and Sustainable Building Manuals by IGBC-Hyderabad and TERI-GRIHA, New Delhi.

__

Dr. J.R.Dhanuskar H.O.D ,Civil

Dr.R.B.Joshi Dean Academics 31

(An Autonomous Institute Affiliated to SavitribaiPhule Pune University, Pune)

S.Y. B. Tech Academic Year – 2023-2024 Semester -IV [CE2208T] Analysis of Structures

_	<u> </u>	
Teaching Scheme:	Credit	Examination Scheme:
TH: 3 Hours/Week	3	In Sem. Evaluation: 20 Marks
		Mid Sem. Exam : 30 Marks
		End Sem. Exam : 50 Marks

Course Prerequisites: Equilibrium Condition, Bending moment and Shear force diagram, Moment of inertia.

Course Objective:

To calculate various unknown forces in determinate and indeterminate structures.

Course Outcome:

After successful completion of the course, students will able to:

CO1: Analyze indeterminate structures using slop deflection method.

CO2: Analyze indeterminate structures using moment distribution method.

CO3: Apply influence line diagram for beams and trusses.

CO4: Estimate unknown forces for Arches and Tension Cables.

CO5: Analyze indeterminate structures and trusses using Flexibility and unit load method.

CO6: Analyze indeterminate structures and frames using stiffness method.

Course Contents

UNIT-I	Slope-deflection method of analysis	6 Hours
Slope-deflection equations, equilibrium equation of Slope deflection method, application to beams		
with and without joint translation and rotation, yielding of support, application to sway and non-		
sway rigid jointed rectangular portal frames.		

	UNIT-II Moment Distribution Method of Analysis		6 Hours
I	Moment distribution method of analysis: Stiffness factor, carry over factor, distribution factor		
	application to beams with and without joint translation and yielding of support, application of		
l	moment distribution method to sway and non sway rigid jointed rectangular portal frames.		

UN11-111	Influence Line Diagram of Beams and Trusses	6 Hours
Influence line diagrams	for reactions, shear force and bending moment for determina	ate beams. Influence
line diagrams for reactio	ns, shear force and bending moment for indeterminate bean	ns Influence line
diagram for trusses.		

UNIT-IV	Analysis of Arches and Cables	6 Hours

Dr. J.R.Dhanuskar H.O.D ,Civil

Dr.R.B.Joshi **Dean Academics**

32

Types of arches, analysis of three hinged parabolic arch with supports at same level, and different levels, analysis of two hinged parabolic and semicircular arch with supports at same level, analysis of three hinged semicircular arch with supports at same level, determination of radial shear and normal thrust for parabolic and circular two hinged and three hinged arch. Analysis of parabolic and semicircular two hinged arches for temperature effect and rib shorting. Tension in the cable supported at same and different levels, parabolic cables subjected to UDL.

UNIT-V	Flexibility Method of Matrix Analysis and Unit Load	6 Hours
	Method	

Flexibility Method: Fundamental concepts of flexibility method of analysis, formulation of flexibility matrix, application of flexibility method to pin jointed plane trusses, beams and rigid jointed rectangular portal frames. Analysis of redundant trusses by unit load method, lack of fit, temperature changes.

UNIT-VI Stiffness Method of Matrix Analysis 6 Hours

Stiffness method: Fundamental concepts of stiffness method of analysis, formulation of stiffness matrix, application of stiffness method to beams and rigid jointed rectangular portal frames

Text Books:

- T1 S. Ramamrutham, S. Narayan "Theory of structures", DhanapatRai Publications.
- T2 S S. Bhavikatti, Structural Analysis Vol-1, third edition, Vikas publishing House, PVT, LTD.
- T3 Analysis Of Structure By Dr. M.M. Ratwani and S K Duggal (VOL. I andII)

Reference Books:

- R1. B C Punmia, Jain, "Mechanics of Materials: Vol I and II", Laxmi Publications.
- R2. R.C. Hibbeler, "Structural Analysis", Pearson Education Asia Pub. (5thEdition).
- R3. L. S. Negi and R. S. Jangjid, Structural Analysis, Tata Mc. Graw, New Delhi, 1997.
- R4.Junnarkar S. B., Mechanics of Structure, Volume I and II
- R5. G.S. Pandit and S. P. Gupta, Structural Analysis: A matrix approach, Tata McGraw Hill.

Dr. J.R.Dhanuskar H.O.D ,Civil

Dr.R.B.Joshi Dean Academics 33

JSPM's RAJARSHI SHAHU COLLEGE OF ENGINEERING

TATHAWADE, PUNE-33 (An Autonomous Institute Affiliated to SavitribaiPhule Pune University, Pune)

S.Y. B. Tech Academic Year – 2023-2024 Semester -IV [CE2209T] Surveying and Geomatics

Teaching Scheme:	Credit	Examination Scheme:
TH: 03 Hours/Week	3	In Sem. Evaluation: 20 Marks
		Mid Sem. Exam : 30 Marks
		End Sem. Exam : 50 Marks

Course Prerequisites: Basic Geometry and Physics

Course Objective:

To understand the different kinds of mapping and their relative accuracy along with the different methods of leveling and their accuracy. To use of concepts of geometry in getting solutions to the obstacles in surveying and to set out curves for highways and railways.

Course Outcome:

After successful completion of the course, students will able to:

CO1: Calculate the directions of lines and elevations of objects.

CO2: Apply theodolite observations for mapping.

CO3: Apply advance methods of surveying for accurate data collection and mapping.

CO4: Determine data to Set out of curves for highways and railways.

CO5: Describe the process of establishing control points for large area mapping

CO6: Discuss regarding layouts of construction and hydrographic survey.

Course Contents

UNIT-I Compass and Levelling Definition, objective and fundamental classification of surveying (Plane and Geodetic), Concept of bearing, meridian and their types, construction and use of prismatic compass, local attraction and correction for local attraction, dip, declination and calculation of true bearings. Plane tabling, Planimeter. Introduction to leveling, Types of leveling, Types of bench marks, Study and use of dumpy level, auto level, digital level and laser level in construction industry, principle axes of dumpy level, testing and permanent adjustments, reciprocal leveling, curvature and refraction corrections, distance to the visible horizon. Contouring – Direct and indirect methods of contouring, uses of contour maps, study and use of topo-sheets, profile leveling and cross-sectioning and their applications.

UNIT-II Theodolite Surveying. 6 Hours

Study of vernier transit 20" theodolite, uses of theodolite for measurement of horizontal angles by repetition and reiteration, vertical angles, measurement of deflection angles using transit theodolite and magnetic bearing, prolonging a line, lining in and setting out an angle with a theodolite. Fundamental axes of theodolite: testing and permanent adjustments of a transit theodolite. Theodolite traversing – computation of consecutive and independent co-ordinates, adjustment of closed traverse by transit rule and Bowditch's rule, Gales traverse table. Checks, omitted measurements, area calculation by independent co-ordinates.

Dr. J.R.Dhanuskar H.O.D ,Civil

Dr.R.B.Joshi **Dean Academics**

UNIT-III

Tacheometry Electronic Measurement Techniques and GPS

6 Hours

Tacheometry – application and limitations, principle of stadia tacheometry, fixed hair method with vertical staff to determine horizontal distances and elevations of points, finding tacheometric constants. Tacheometric contouring. Surveying using total station – Study and use of Electronic Tacheometer (Total station) types, functions (remote elevation measurements, remote distance measurements, area measurement).

Global Positioning system-GPS satellite systems, components of GPS, positioning and relative positioning with GPS, Applications of GPS. Introduction to DGPS and its uses.

UNIT-IV Curves 6 Hours

Introduction to horizontal and vertical curves (no numerical and derivations to be asked on vertical curves and reverse curves), different types and their applications, simple and compound circular curves, elements and setting out by linear methods such as radial and perpendicular offsets, offsets from long chord, successive bisection of chord and offsets from chords produced. Angular methods: Rankine's method of deflection angles (one and two theodolite methods). (Numerical on simple circular curves and compound curves to be asked), Transition curves: necessity and types

UNIT-V

Geodetic Surveying and triangulation adjustment

6 Hours

Geodetic Surveying: Objects, Methods of Geodetic Surveying, Introduction to triangulation, Classification of triangulation systems, Triangulation figures, Concept of well-conditioned triangle, selection of stations, Indivisibility and height of stations.

Kinds of errors, Laws of weights, Determination of most probable values (MPV) of conditioned and independent quantities, Method of Least Squares, Indirect observations, Probable error and its determination, Distribution of error to the field measurements, Normal equation, Method of correlates

UNIT-VI

Construction Survey and Hydrographic Surveying

6 Hours

Introduction to construction survey, establishing of horizontal and vertical controls, setting out of buildings, maintaining verticality of tall buildings, survey for open traverse (roadway, railways, drainage lines, water lines, canals). Hydrographic Surveying: Objects, Applications, Establishing controls, Shore line survey, Sounding, Sounding equipment, Methods of locating soundings – conventional and using GPS, Reduction of soundings, Plotting of soundings, Nautical sextant and its use, Three point problem and its use, solution of three point problem by all methods, Tides and tide gauges, determination of MSL

Text Books:

- T1 T. P. Kanetkar and Kulkarni, Surveying and Levelling Vol. I and Vol. II, Pune VidyarthiGrihaPrakashan.
- T2 B. C. Punmia, Ashok K. Jain, Arun K. Jain, Surveying, Vol. I and II, Laxmi Publications.

Reference Books:

- R1. Surveying by C. Venkatramaiah, University Press.
- R2. Surveying, Vol. I and II by S. K. Duggal, Tata Mc-Graw Hill.
- R3. Surveying and Levelling by Subramanian, Oxford University Press.
- R4. Essentials of GPS by N K Agarwal.

Pune University L.D. No. Pt/PV Engg./ 173/(2001)

Dr.R.B.Joshi Dean Academics 35

Dr. R.K.Jain Director RSCOE, Pune

Dr. J.R.Dhanuskar H.O.D , Civil

33

(An Autonomous Institute Affiliated to SavitribaiPhule Pune University, Pune)

S .Y. B. Tech Academic Year – 2023-2024 Semester -IV [CE2209L] Surveying and Geomatics Lab

Teaching Scheme:	Credit: 01	Lab Evaluation
LAB: -2 Hours/Week		In Sem Continuous Evaluation: 30 Marks:
		End Sem. Exam : 20 Marks

Course Prerequisites: Basic Geometry and Physics

Course Objective:

To use and handle the different kinds of Surveying equipments to achieve accuracy in mapping and elevation determination.

Course Outcome:

After successful completion of the course, students will able to:

CO1: Determine the directions of survey lines, elevations of survey stations and do road project using surveying equipment's.

CO2: Generate data and use it for mapping using surveying equipment

CO3: Use advance surveying equipment for mapping.

CO4: Take observations for hydrographic Survey.

Course Contents

Lab Contents

Guidelines for Assessment

Continuous assessment of laboratory work is to be done based on overall performance and lab practicals /assignments performance of student. Each lab practical/assignment assessment will assign grade/marks based on parameters with appropriate weightage. Suggested parameters for overall assessment as well as each lab assignment assessment include- timely completion, performance, innovation, efficient codes, punctuality and neatness.

List of Laboratory Assignments/Experiments (minimum 7 to be covered)

- Measurement of magnetic bearings of sides of a triangle or polygon, correction for local attraction and calculations of true bearings using prismatic compass.
 Simple and differential levelling with at least three change points using level.
 Finding horizontal and vertical distance using Tacheometer.
 Measurement of horizontal angles (by repetition method) using Vernier Transit Theodolite.
 Setting out a circular curve by Rankine's method of deflection angles.
 - 6 Measurement of horizontal angles (by reiteration method) using one second Theodolite / Total
 - 7 Study and use of nautical sextant and measurement of horizontal angles
 - 8 Solution to three point problem by analytical method
 - **9** Distance and angle measurements using Total station.

Pune University
L.B. No.
PU/PN Engg./
173/(2001) *

Dr.R.B.Joshi Dean Academics 36

Dr. R.K.Jain Director RSCOE, Pune

Dr. J.R.Dhanuskar H.O.D ,Civil

10 Measurement and Mapping using Drone.

Project I: Road project using Auto level for a minimum length of 100 m including fixing ofalignment, profile levelling, cross-sectioning, plotting of L section and Cross Section. (One full imperial sheet including plan, L-section and any three typical Cross-sections).

Project II: Tachometric contouring project on hilly area with at least two instrument stations about 60 m to 100 m apart and generating contours using software such as Autodesk land desktop, Auto-civil, Foresight etc. (minimum contour interval 1 meter).

Project III: Traversing using a total station (up to 1 ha area)

Text Books:

T1. T. P. Kanetkar and Kulkarni, Surveying and Levelling Vol. I and Vol. II, Pune VidyarthiGrihaPrakashan.

T2. Dr. B. C. Punmia, Ashok K. Jain, Arun K. Jain, Surveying, Vol. I and II, Laxmi Publications.

Reference Books:

- R1. Surveying by C. Venkatramaiah, University Press.
- R2. Surveying, Vol. I and II by S. K. Duggal, Tata Mc-Graw Hill.
- R3. Surveying and Levelling by Subramanian, Oxford University Press.

97__

Dr. J.R.Dhanuskar H.O.D ,Civil

Dr.R.B.Joshi Dean Academics

37

(An Autonomous Institute Affiliated to SavitribaiPhule Pune University, Pune)

S .Y. B. Tech Academic Year – 2023-2024 Semester -IV

[CE2210L] Introduction to Python programming

Teaching Scheme:	Credit	Examination Scheme:
TH: - 0 Hours/Week	2	Lab Evaluation
TU: 01 Hours/Week		In Sem. Cont. Evaluation: 30 Marks
LAB: 02 Hours/Week		End Sem. Practical Exam: 20 Marks
		TW: 50 Marks

Course Prerequisites: Basic logic development

Course Objective:

The Objective of this course is to make students learn and understand basics of programming, data structure and algorithms using Python programming language, and to apply the knowledge gained to solve computational problems.

Lab Outcome:

After successful completion of the Lab, students will able to:

CO1: Develop Python program to demonstrate use of operators and data types.

CO2: Develop Python program using lists, tuples and dictionaries.

CO3: Develop python program using Function, modules and packages.

CO4: Design Classes for given problem.

CO5: Perform file operations to read and write data in files.

Lab Contents

Guidelines for Assessment

Continuous assessment of laboratory work is to be done based on overall performance and lab assignments performance of student. Each lab Experiment and assignment assessment will assign grade/marks based on parameters with appropriate weightage. Suggested parameters for overall assessment as well as each lab assignment assessment include- timely completion, performance, innovation, efficient codes, punctuality and neatness

- Both internal and external examiners should jointly frame suitable problem statements for practical examination based on the term work completed.
- During practical assessment, the expert evaluator should give the maximum weightage to the satisfactory implementation of the problem statement.
- The supplementary and relevant questions may be asked at the time of evaluation to test the student for advanced learning, understanding of the fundamentals, effective and efficient implementation.
- Encouraging efforts, transparent evaluation and fair approach of the evaluator will not create any uncertainty or doubt in the minds of the students. So adhering to these principles will consummate our team efforts to the promising boost to the student's academics.

- P892 -

Dr. J.R.Dhanuskar

H.O.D ,Civil

Dr.R.B.Joshi Dean Academics 38

	List of Laboratory Experiments (minimum 8 to be covered)		
1	Demonstrate basic python block and data types		
2	Demonstrate operators in python		
3	Demonstrate decision control statement – if, if-else, elif		
4	Demonstrate looping statement		
5	Demonstrate Break, Continue, Pass statement		
6	6 Demonstrate list slicing and list manipulation using in-built methods		
7	7 Demonstrate tuple using in-built methods		
8	8 Demonstrate set and its operation		
9	Demonstrate dictionary manipulation		
10	Demonstrate function using variable length arguments		
11	Demonstrate String related function		
12	12 Demonstrate data visualization using matplotlib		
13	13 Create a class to exercise OOP features in python		
14	Demonstrate File I/O operations		
15	Demonstrate Exception handling in python		

Text Books

- T1. Allen B. Downey, Think Python: How to Think Like a Computer Scientist", 2nd edition, Updated for Python 3, Shroff/O'Reilly Publishers,2016
- T2. Guido van Rossum and Fred L. Drake Jr, "An Introduction to Python Revised and updated for Python 3.2, Network Theory Ltd., 2011.

Reference Books:

- R1. Charles Dierbach, "Introduction to Computer Science using Python: A Computational Problem-Solving Focus, Wiley India Edition, 2013.
- R2. John V Guttag, "Introduction to Computation and Programming Using Python", Revised and expanded Edition, MIT Press, 2013
- R3. Kenneth A. Lambert, "Fundamentals of Python: First Programs", CENGAGE Learning, 2012.
- R4. Paul Gries, Jennifer Campbell and Jason Montojo, "Practical

Programming: An Introduction to Computer Science using Python 3", Second edition, Pragmatic Programmers, LLC,2013.

- P842 -

Dr. J.R.Dhanuskar H.O.D ,Civil

Dr.R.B.Joshi Dean Academics 0

39

(An Autonomous Institute Affiliated to SavitribaiPhule Pune University, Pune)

S.Y. B. Tech Academic Year – 2023-2024 Semester -IV [HS2205T] Economics

Teaching Scheme:	Credit	Examination Scheme:
TH: 02 Hours/Week	2	In Sem. Evaluation: 20 Marks
		Mid Sem. Exam : 30 Marks
		End Sem. Exam : 50 Marks

Course Prerequisites: Not required

Course Objective:

- 1. To provide students with a foundational understanding of economics, focusing on both micro and macro aspects.
- 2. Students will learn essential concepts such as the basic economic problem, demand and supply theories, cost analysis, market structures, and financial systems, including the money and capital
- 3. To analyze how individual firms and economies operate, make informed decisions, and assess the impact of different mark

Course Outcome:

On completion of the course, student will be able to—

- **CO 1:** Record the core principles of economics, including the basic economic problem and the nature of firms.
- **CO 2:** Explain the theory of demand, supply analysis and cost analysis.
- CO 3: Apply the laws of demand and supply, understand their determinants, and recognize shifts in demand and supply curves.

CO4: Calculate and interpret various cost concepts such as fixed, variable, total, and marginal costs, and use break-even analysis in decision-making

Course Contents UNIT-I **Basic Concept of Economics** 4 Hours Introduction to Economics, Basic Economic Problem, Circular Flow of Economics (Two, Three and Four Sector Model), Nature of the Firm- Rationale, Micro and Macro Economics and their interdependence on each other, Difference between Micro and Macro Economics UNIT-II **Theory of Demand** 4 Hours Concept of Demand, Determinants of Demand, Demand function, Law of Demand, Demand Schedule and curve, Movement along and shift of Demand Curve, Exceptions to the law of demand UNIT-III Theory of Supply Analysis 4 Hours Meaning and concept of supply, Law of supply, Supply Schedule, Supply Curve and Shift of Supply Curve. Exception to Law of Supply UNIT-IV

Dr. J.R.Dhanuskar H.O.D ,Civil

Dr.R.B.Joshi Dean Academics

Cost Analysis

40

Dr. R.K.Jain Director RSCOE, Pune

4 Hours

Concepts of Cost:- fixed cost, variable cost, total cost, average cost, marginal cost, opportunity cost. Break even analysis, Graphic Method and Algebraic method (Numerical from BEP)

Forms of Market and Price Determination UNIT-V 4 Hours

Forms of Market - Perfect Competition, Monopoly and Monopolistic Competition, Market Equilibrium-Price Determination under Perfect Competition, Monopoly and Monopolistic Markets.

UNIT-VI Money Market and Capital Market 4 Hours

Meaning and concept of money market, Instruments of money market, Capital Market and its instruments, Role and Functions of Reserve Bank of India

Text Books:

- T1. Economic Analysis of Business Decision Dr Meenakshi Duggal
- T2. Introductory Microeconomics and Macroeconomics, T.R. Jain and Dr V.K. Ohri
- T3. Managerial Economics D.N. Dwivedi

Reference Books:

- R1. Intermediate Microeconomics: A Modern Approach, Hal R, Varian.
- R2. Principles of Macroeconomics, N. Gregory

University I.B. No. /PN 'Engg./

> Dr.R.B.Joshi **Dean Academics**

41

Dr. R.K.Jain Director RSCOE, Pune

Dr. J.R.Dhanuskar H.O.D ,Civil